Imagine a two state system

E $U=0$ or $U=E$

Quantum mechanical systems — energy is discrete

Imagine a two state system

Now combine a few of these:

s $U=Nq$

What microstates could it be in?

1. $N=3$ $q=2$

$|000\rangle$ $|001\rangle$ $|010\rangle$ $|011\rangle$ $|100\rangle$ $|101\rangle$ $|110\rangle$
3 possibilities. Any reason to favor one over the others?

Postulate of equal a priori probabilities

In the absence of any further information, all are equally likely!!

2 Add another state, \(N = 4, \varphi = 2 \)

\[
\begin{align*}
(0110) & \quad (1010) & \quad (1100) \\
\text{plus} & \quad (0011) & \quad (1001) \quad (0101)
\end{align*}
\]

Now 6 possibilities > 3

As system size grows, possibilities \(\Omega \) grow.

Sounding familiar?

How many in general? \(N \) systems, \(\varphi \) quanta

\[
\Omega = \frac{N!}{\varphi! (N-\varphi)!}
\]

unique combinations assuming quanta are indistinguishable

3 Allow two \(N = 3, \varphi = 2 \) systems to interact

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
\rightarrow
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
\]

\(\Omega_1 = \Omega_2 = \binom{3}{2} = 3 \quad \Omega_{12} = \binom{6}{4} = \frac{6!}{4!2!} = 15 \)

Boltzmann had the key insight, and it's on his tomb!

\[
S = k \ln \Omega \quad \text{or} \quad S = k \ln \Omega
\]
\[S_1 = S_2 = k \ln 3 \quad S_{12} = k \ln 15 > 2k \ln 3 \]
\[S_1 + S_2 = 2k \ln 3 \]

Why \(k \)? Only way to get the extensivity property we want.

Amazing it was figured out!!

In our small example here \(S \) is not continuous.

Consider 2 big systems

\[
\begin{align*}
U_1 & \quad S_i = k \ln \Omega_1 \\
U_2 & \quad S_i = k \ln \Omega_2
\end{align*}
\]

thermal contact (exchange quanta)

What's \(U \), @ equilibrium?

\[\Omega_1 \text{ increases very rapidly with } U_1, \quad \Omega_2 \text{ decreases } \]

\[\Omega = \Omega_1(U_1) \Omega_2(U - U_1) \]

Any value of \(U_1 \) is possible, but one value is overwhelmingly more likely than all others.

Flip enough fair coins and you'll get 50:50 to arbitrary accuracy (HW)
Maximize Ω

\[
\frac{d\Omega}{du_1} = \Omega_2 (u-u_1) \frac{d\Omega_1}{du_1} + \Omega_1 (u) \frac{d\Omega_2}{du_1} = 0 \quad \frac{1}{\Omega_1, \Omega_2}
\]

\[
\frac{1}{\Omega_1} \frac{d\Omega_1}{du_1} + \frac{1}{\Omega_2} \frac{d\Omega_2}{du_2} = 0
\]

\[
\frac{1}{\Omega_1} \frac{d\Omega_1}{du_1} = -\frac{1}{\Omega_2} \frac{d\Omega_2}{du_2} \quad \text{but} \quad du_2 = -du_1
\]

\[
\frac{d\ln\Omega_1}{du_1} = \frac{d\ln\Omega_2}{du_2} \rightarrow \text{condition for thermal equilibrium!!}
\]

Peak back at Boltzmann's tomb

\[
\frac{dS_1}{du_1} = \frac{dS_2}{du_2} = \frac{1}{T} \quad \text{!! constant} \quad V, N \text{ here}
\]

Temperature emerges as simply the way to ensure the most likely distribution of quanta!!

\[
dl = \left(\frac{du}{dS}\right) ds + \ldots \sim T ds = d\xi \text{rew for a reversible process w/o work}
\]

Now back to the 2 state example.

\[
S = k \ln N = k [\ln N! - \ln e! - \ln(N - e)!]
\]

If N is any bigger than 100, Stirling's approximation is nearly exact:

\[
N! \sim N^N e^{-N} \sqrt{2\pi N} \quad \ln N! \sim N \ln N - N
\]
\[S = k \left[N \ln N - \frac{N}{2} \ln \frac{2}{N} - \left(1 - \frac{N}{2} \right) \ln \left(1 - \frac{N}{2} \right) \right] \]

Add and subtract \(\frac{N}{2} \ln N \)

\[S = k \left[(N-\frac{N}{2}) \ln N + \frac{N}{2} \ln N - \frac{N}{2} \ln \left(1 - \frac{N}{2} \right) \right] \]

\[S = k \left[\frac{N}{2} \ln \frac{N}{2} - (N-\frac{N}{2}) \ln \left(1 - \frac{N}{2} \right) \right] \]

Let \(U = \frac{N}{2} \)

\[S = k \left[-\left(\frac{U}{e} \right) \ln \left(\frac{U}{Ne} \right) - (N-\frac{U}{e}) \ln \left(1 - \frac{N}{e} \right) \right] \]

Entropy in terms of energy. The fundamental equation of this system.

Plot \(S \) vs \(U \)

\[\frac{1}{T} = \frac{dS}{dU} \]

Classical stat mech only works when the number of states is \(\gg \) the number of quanta. (Almost) Always true.

For our toy problem, \(\Omega(U) \) decreases when \(U > \frac{N}{2} e \). Typically an unphysical situation, except for exotic matter.
Ok, let's evaluate \(\frac{\partial S}{\partial U} \bigg|_N = \frac{1}{T} \)

\[
Z \to \quad \frac{k_B}{e} \ln \left[\frac{N e}{u} - 1 \right] = \frac{1}{T} \quad \text{"thermal equation of state"}
\]

\[
Z \to \quad U(T) = \frac{N e}{1 + e^{E/k_B T}}
\]

\[
\lim_{T \to 0} U(T) = 0 \quad \ldots \ldots \quad \text{all in the ground state}
\]

\[
\lim_{T \to \infty} U(T) = \frac{N e}{2} \quad \ldots \ldots \quad \text{half in the ground state}
\]

Random order

Can show \(S \left(\frac{N e}{2} \right) = k \ln 2 \), maximum possible entropy in 2-state system

\[
\begin{array}{c}
U \\
\hline
\text{\(\frac{N e}{2} \)} \\
(\frac{\partial S}{\partial U}) \to 0 \\
(\frac{\partial S}{\partial U}) \to \infty \\
T
\end{array}
\]

(\text{Thermally, can't access } U > \frac{N e}{2} !)

(\text{Could intentionally construct a closed system with } U > \frac{N e}{2} \text{ but given the chance it will spontaneously decay - laser})
Heat capacity \[C = \frac{dU}{dT} \] is a bit of a mess even definitely non-linear.

This is an example of a microcanonical treatment, often called "NVE".

Can only be solved analytically for a few simple systems:
- 2 state
- harmonic oscillator: infinite ladder of states
- polymer chain: fancy 2 state

Statistical mechanics uses other approaches to solve this problem. For now we'll return to the classical approach.