
CHAPTER 3

DATA AND MONTE CARLO SAMPLES

The data samples used in this analysis are described in Section 3.1. The Monte

Carlo (MC) simulated samples are described in Section 3.2, with the generation of the

privately produced samples (with the necessary EFT weights) covered in 3.2.1, and

the quadratic parametrization of the weights detailed in 3.2.2. All samples used in this

analysis are in the v9 NanoAOD format [21] with Ultra Legacy (UL) reconstruction.

3.1 Data samples and triggers

This analysis uses data from proton-proton collisions at
p
s = 13 TeV collected

by the CMS experiment during 2016, 2017, and 2018 with a combination of single,

double, and triple lepton triggers. The total integrated luminosity is 137.6 fb�1

with an uncertainty of 1.6% fb�1 [37]. The set of triggers and luminosity blocks

are provided for reference in Appendix A. Since one trigger can be a part of multiple

datasets, the overlap between datasets must be accounted for in order to avoid double

counting. The following procedure is used:

• An arbitrary order of the datasets from a given year is chosen.

• An event that is from the first dataset (dataset A) is never discarded.

• An event that is from the second dataset (dataset B) is discarded if it passes
any of the triggers from dataset A (since it was already accounted for in A).

• An event that is from the third dataset (dataset C) is discarded if it passes any
of the triggers from dataset A or dataset B (since it was already accounted for).

• The procedure continues for all of the datasets that are included in the given
data-taking period.
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3.2 Monte Carlo samples

This analysis aims to study dimension-six EFT e↵ects on processes in which one

or more top quarks are produced in association with additional charged leptons;

processes which lead to the same multilepton final-state signatures but are not im-

pacted by these EFT operators are backgrounds for this analysis. The expected

background contributions are estimated using a combination of simulated samples

and data-driven techniques, discussed in Chapter 8 (with the simulated samples used

in the background estimation listed in Appendix A).

The expected yield for a given selection is calculated as

Expected yield = � L

P
PasswP

Generatedw
, (3.1)

where � is the cross section for the given process, L is the integrated luminosity,

w are the event weights; the sum in the numerator is over the events that pass the

given selection criteria, and the sum in the denominator is over all generated events.

The ratio of these sums corresponds to the acceptance times e�ciency. As will be

explained in the following sections, the weights of the signal samples are functions of

the WCs; the details of the signal sample generation are described in Section 3.2.1,

and 3.2.2 covers the details that are specific to the EFT weights.

3.2.1 Monte Carlo generation of signal samples

The signal processes for this analysis are tt̄H, tt̄l⌫, tt̄l̄l, tl̄lq, tHq, and tt̄tt̄. The

signal samples are produced at leading order (LO) with the MadGraph [5] event

generator (version 2.6.5). As discussed in Chapter 2, the dim6top UFO model [8]

is used to incorporate the EFT e↵ects. Parton showering and hadronization for the

samples are performed with the Pythia generator [55], which also handles the decays

of the top quark and the Higgs boson. In order to avoid overlap between the tt̄l̄l and
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tt̄H samples, we specify in the MadGraph process card that the tt̄l̄l process should

not include an intermediate H; the same requirement is made for the tl̄lq process

in order to avoid overlap with tHq. All simulated signal processes are normalized

to theoretical cross sections at next-to-leading order (NLO) in QCD, as listed in

Table A.5. The private EFT samples produced for this analysis are located at the

Notre Dame T3. Tor reference their file paths are listed in Tables A.6, A.7, A.8,

and A.9.

For the tt̄X processes (tt̄H, tt̄l⌫, and tt̄l̄l), we include an additional final state

parton in the matrix element (ME) generation. The inclusion of the additional par-

ton can improve the modeling at high jet multiplicities, and can also significantly

impact the dependence of the tt̄X processes on the WCs [31]. The primary factors

contributing to the modification of the cross section’s EFT dependence are related

to the new quark-gluon initiated diagrams that become available when an additional

final state parton is included in the ME calculation. Other factors, such as the chiral

and color structure of the operator, can also play an important role. The single top

processes (tl̄lq and tHq) and the tt̄tt̄ sample are not produced with an additional

parton. The single top processes have technical complications associated with cor-

rectly performing the jet matching between the ME and the parton shower (PS) for

t-channel single top processes that currently do not allow a valid matched sample to

be produced. In the case of tt̄tt̄, an additional parton is not included because the

generation of the MadGraph gridpack is very computationally expensive. It would

not be feasible to produce enough tt̄tt̄ samples to perform a thorough validation of

the starting point and matching parameters validation.

Since we are unable to include an additional parton for the single top samples, and

in these cases the extra parton may potentially have a significant e↵ect on the high jet

multiplicity categories (since these single top processes would not generally produce

as many jets as our other signal processes), we apply an additional uncertainty to
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these processes, described in Chapter 9. This uncertainty is determined by comparing

the jet multiplicity distribution of our private EFT samples (reweighted to the SM)

against centrally produced NLO samples, listed in Table A.10.

For the samples produced with an additional parton, a matching procedure must

be applied to account for the overlap in phase space between the contributions of the

ME and parton shower (PS). For this analysis, the matching is implemented using

the MLM scheme [6], an event-rejection based approach that matches ME partons

to jets clustered by Pythia, discarding events in which the jets are not successfully

matched to partons in order to avoid double counting.

It should be noted that the matching procedure can lead to complications when

applied to EFT samples; since EFT e↵ects are included in the ME contribution, but

not in the PS contribution, it is possible that an inconsistency could arise. Specifically,

if an EFT vertex produces a significant soft and collinear contribution, the events

removed by the matching procedure will never be replaced by corresponding events

generated by the PS, causing this contribution to be missed. However, of the WCs

considered in this study, the operator associated with the ctG WC is the most prone

to these e↵ects, and its contributions to the soft and collinear regime are suppressed;

thus, the phase space overlap with the SM contribution from the PS is small, and

the e↵ects of this potential issue are negligible [31].

In addition to the theoretical justification outlined above, we can validate the

matching procedure empirically by examining di↵erential jet rate (DJR) distributions

for the simulated samples. Additional information about the validation of the DJR

distributions may be found in Appendix B, and a more detailed discussion of the

validation of matched tt̄X samples is presented in [31].

As an additional form of validation, our privately produced signal samples (reweighted

to the SM) are compared against SM samples that are centrally produced by the CMS

collaboration. The details of this comparison are presented in Appendix C.
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3.2.2 Parameterization of the predicted yields in terms of the WCs

This section will describe the method through which the predicted yields are

parameterized in terms of the WCs. In order to write the predicted yields as a

function of the WCs, it is first necessary to understand how the cross section depends

on the WCs. Starting with the ME, we can write the amplitude for a given process

as the sum of the SM and new physics components:

M = MSM +
X

i

ci

⇤2
Mi, (3.2)

where MSM is the SM ME, Mi are the MEs corresponding to the new physics com-

ponents, and ci are the WCs. Since the cross section (inclusive or di↵erential) is

proportional to the square of the ME, it will depend quadratically on the WCs:
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where sjk are structure constants of the N -dimensonal quadratic function for N

WCs. The number of structure constants (K) required to describe an N -dimensional

quadratic can be written as the following:

K =
(N + 1) · (N + 1)� (N + 1)

2
+ (N + 1). (3.4)

This analysis considers 26 WCs, so by Eq. 3.4, there are 378 structure constants

required to fully describe the 26-dimensional quadratic. In principle, we could solve

for these structure constants if the cross section at 378 points in the 26-dimensional

WC space were known. However, this would require generating 378 unique simulated

samples at 378 unique points in the 26-dimensional WC space. In practice, it would

not feasible to generate this many simulated samples.

Instead of attempting to determine the parametrization for the inclusive cross

15



section, we parametrize each event’s weight in terms of the WCs. Since each weight

corresponds to the event’s contribution to the inclusive cross section, the event weight

essentially represents a di↵erential cross section, which can be described by a 26-

dimensional quadric in terms of the WCs, as written in equation 3.3. In order to

determine the 378 structure constants of the event weight’s quadratic parameteriza-

tion, we need to know the event weight at 378 distinct points in the 26 dimensional

space. This is feasible to do using the MadGraph event reweighting [41] procedure.

Given an event generated under a specific theoretical scenario, the MadGraph

event reweighing procedure computes additional weights associated with the same

event under alternative theoretical scenarios. In the case of EFT reweighting, the

original theoretical scenario corresponds to a particular point in the 26-dimensional

WC space, provided to MadGraph by the user. We refer to this as the “starting point”

for the sample. The alternative theoretical scenarios correspond to other distinct

points in the 26-dimensional WC space (i.e. other sets of values for the 26 WCs),

also provided to MadGraph by the user. From the matrix-element computations,

MadGraph calculates the weight at the starting point and at each of the additional

reweight points. With at least 378 weights corresponding to 378 independent points

in the 26-dimensional WC space, we can solve for the 26 structure constants, and

fully determine the 26-dimensional quadric function that describes the event’s weight

in terms of the WCs.

Once we have obtained each event’s 26-dimensional quadratic parametrization

wi(~c/⇤2), we can find the dependence of any observable bin on the WCs by summing

the quadratic parameterizations for each of the events that passes the selection criteria
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for the given bin. The yield Y for a given bin can thus be written as
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(3.5)

where the sum over i corresponds to the sum over all of the events that pass the

selection criteria for the given bin. Since the sum of multiple quadratic functions is

also quadratic, the yield in each bin will be quadratic in terms of the WCs. Note that

in order to obtain the yield, the right-hand side of Eq. 3.5 must still be normalized

as shown in Eq. 3.1.

Since we are thus able to write the predicted yield of any observable bin as a

function of the 26 WCs, we can obtain detector-level predictions at any arbitrary

point in the 26-dimensional EFT space. This is the key enabling concept of this

analysis, as it allows for all EFT e↵ects across all analysis bins to be simultaneously

accounted for when performing the likelihood fitting with the statistical framework

(which will be described in Chapter 10).

We generate all of our signal processes using this procedure. However, we do not

include all WCs for all processes (since some of the WCs do not impact all of the

processes), so the number of reweight points included in the MC generation varies

by sample. The tt̄tt̄ process incorporates the full set of 26 WCs. By Eq. (3.4), a

total of 378 weights are required to fully determine the 26-dimensional quadratic

parameterization. However, in order to ensure that a good fit can be found, we over-

constrain the fit by including approximately 20% more points than the minimum

number required, for a total of 454 reweight points. As discussed in Section 2.2,

the other five signal samples have a negligible dependence on the four four-heavy

operators to which tt̄tt̄ is sensitive, so these samples incorporate only 22 WCs. This

means a minimum of 276 reweight points are required to determine the 22-dimensional
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quadratic fit, but we again ensure the fit is over-constrained by generating additional

reweight points, for a total of 332 reweight points for each event.

The MadGraph reweighting procedure is powerful because it allows di↵erent re-

gions of EFT phase space to be probed with a single MC sample; however, there is

an important caveat to the procedure that should be highlighted. Since MadGraph

produces unweighted samples of events, the events generated by MadGraph mainly

correspond to phase space occupied by original event. Thus, the reweighting proce-

dure does not work unless the original point in phase space (i.e. the starting point)

and the alternative points in phase space (i.e. the reweight point) have some overlap.

EFT operators lead to new diagrams that may populate areas in phase space that

are not present in the SM, therefore the SM cannot be used as a valid starting point

for the reweighting procedure. Instead, a point that is relatively far from the SM

should be chosen.

Nevertheless, even for non-SM starting points, there is still no guarantee that the

chosen point will allow MadGraph to properly reweight to all areas of relevant phase

space. Therefore, it is important to validate reweighted samples to ensure that they

are able to be consistently reweighted to as much of the relevant phase space as pos-

sible. For example, we check that the samples are able to be consistently reweighted

to other points in EFT phase space (by comparing against dedicated samples pro-

duced at the given point in phase space), as well as checking the distribution of event

weights for samples generated at di↵erent starting points.
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