
CHAPTER 3

DATA AND MONTE CARLO SAMPLES

The data samples used in this analysis are described in Section 3.1. The Monte

Carlo (MC) simulated samples are described in Section 3.2, with the generation of the

EFT samples (with the necessary EFT weights) covered in 3.2.1, and the quadratic

parametrization of the weights detailed in 3.2.2. All samples used in this analysis are

in the v9 NanoAOD format [10] with Ultra Legacy (UL) reconstruction [11].

3.1 Data samples and triggers

This analysis uses data from proton-proton collisions at
p
s = 13 TeV collected by

the CMS experiment from 2016 to 2018, using the subset of lumisections that have

been certified by CMS as good for physics analysis (Table A.1). The total integrated

luminosity is 138 fb�1 with an uncertainty of 1.6% fb�1 [12].

The data used in this analysis are collected with a combination of single, double,

and triple-lepton triggers. The pT thresholds for the various single-lepton triggers

range from 22 to 35GeV. The pT thresholds for the double and triple-lepton triggers

are generally not as high as the single-lepton thresholds, since events with multiple

leptons are more rare, so the pT thresholds may be lowered without resulting in too

high of a trigger rate; for example, the triple-muon trigger has pT thresholds of 12, 10,

and 5GeV. Sets of related triggers are grouped into categories referred to as datasets.

The datasets and associated triggers used in this analysis are listed in Table A.2, A.3,

and A.4 (for 2016, 2017, and 2018, respectively).
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While the triggers in a given dataset are exclusive (i.e. an event may never pass

more than one trigger in a given dataset), triggers from di↵erent datasets may overlap.

This overlap between must be accounted for in order to avoid double counting. The

following procedure is used:

• An arbitrary order of the datasets from a given year is chosen.

• An event that is from the first dataset (dataset A) is never discarded.

• An event that is from the second dataset (dataset B) is discarded if it passes
any of the triggers from dataset A (since it was already accounted for in A).

• An event that is from the third dataset (dataset C) is discarded if it passes any
of the triggers from dataset A or dataset B (since it was already accounted for).

• The procedure continues for all of the datasets that are included in the given
data-taking period.

The orders of the datasets listed in Tables A.2, A.3, and A.4 correspond to the

order used in the overlap removal procedure implemented in this analysis, and Ap-

pendix A.1 steps through the procedure for an example event.

3.2 Monte Carlo samples

This analysis aims to study dimension-six EFT e↵ects on processes in which one

or more top quarks are produced in association with additional charged leptons;

processes which lead to the same multilepton final-state signatures but are not im-

pacted by these EFT operators are backgrounds for this analysis. The expected

background contributions are estimated using a combination of simulated samples

and data-driven techniques, discussed in Chapter 8 (with the simulated samples used

in the background estimation listed in Appendix A).

The expected yield for a given selection is calculated as

Expected yield = � L

P
PasswP
Gen w

, (3.1)
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where � is the inclusive SM cross section for the given process, L is the integrated

luminosity, w are the event weights. Conceptually, the event weights represent how

much a given event contributes to the overall cross section. The sum in the numerator

(
P

Passw) is over the events that pass the given selection criteria, and the sum in

the denominator (
P

Gen w) is over all generated events. The ratio of these sums

corresponds to the acceptance times e�ciency. As will be explained in the following

sections, the weights of the signal samples are functions of the WCs; The details of the

signal sample generation are described in Section 3.2.1, and 3.2.2 covers the details

that are specific to the EFT weights. After the EFT weights have been explained,

we will revisit Eq. 3.1 (in Section 3.2.2 Eq. 3.6), discussing the the subtleties of the

normalization that are specific to this analysis.

3.2.1 Monte Carlo generation of signal samples

The signal processes for this analysis are tt̄H, tt̄l⌫, tt̄l̄l, tl̄lq, tHq, and tt̄tt̄. The

signal samples are produced at leading order (LO) with the MadGraph [13] event

generator (version 2.6.5). As discussed in Chapter 2, the dim6top UFO model [8]

is used to incorporate the EFT e↵ects. Parton showering and hadronization for the

samples are performed with the Pythia generator [14], which also handles the decays

of the top quark and the Higgs boson. In order to avoid overlap between the tt̄l̄l and

tt̄H samples, we specify in the MadGraph process card that the tt̄l̄l process should

not include an intermediate H; the same requirement is made for the tl̄lq process

in order to avoid overlap with tHq. All simulated signal processes are normalized

to theoretical SM cross sections at next-to-leading order (NLO) in QCD, as listed

in Table A.5. The EFT samples produced for this analysis are stored at the Notre

Dame T3. Tor reference their file paths are listed in Tables A.6, A.7, A.8, and A.9.

For the tt̄X processes (tt̄H, tt̄l⌫, and tt̄l̄l), we include an additional final state

parton in the matrix element (ME) generation. The inclusion of the additional parton
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can improve the modeling at high jet multiplicities, and can also significantly impact

the dependence of the tt̄X processes on the WCs [9]. The primary factors contributing

to the modification of the cross section’s EFT dependence are related to the new

quark-gluon initiated diagrams that become available when an additional final state

parton is included in the ME calculation. For example, without an extra parton, c't

can only contribute to tt̄H via quark-anti-quark initiated diagrams (e.g. the diagram

in the lefthand side of Figure 3.1); however, when an extra parton is included, c't can

contribute via quark-gluon initiated diagrams like the one shown in the righthand side

of Figure 3.1. Other factors, such as the chiral and color structure of the operator,

can also play an important role.

Figure 3.1. Example c't diagrams for tt̄H without and with an extra parton.

The single top processes (tl̄lq and tHq) and the tt̄tt̄ sample are not produced

with an additional parton. The single top processes have technical complications as-

sociated with correctly performing the jet matching between the ME and the parton

shower (PS) for t-channel single top processes that currently do not allow a valid

matched sample to be produced. In the case of tt̄tt̄, an additional parton is not

included because the generation of the MadGraph gridpack is very computationally

expensive. It would not be feasible to produce enough tt̄tt̄ samples to perform a

thorough validation of the starting point and matching parameters validation. How-
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ever, the e↵ect of an additional parton for tt̄tt̄ is not expected to be very significant,

since the tt̄tt̄ process already naturally populates the high-jet multiplicity bins of the

analysis. Furthermore, tt̄tt̄ is already dominated by gluon-gluon initiated diagrams,

so quark-gluon initiated diagrams would be expected to have a smaller impact.

Since we are unable to include an additional parton for the single top samples, and

in these cases the extra parton may potentially have a significant e↵ect on the high jet

multiplicity categories (since these single top processes would not generally produce

as many jets as our other signal processes), we apply an additional uncertainty to

these processes, described in Chapter 9. This uncertainty is determined by comparing

the jet multiplicity distribution of our EFT samples (reweighted to the SM) against

SM NLO samples, listed in Table A.10.

For the samples produced with an additional parton, a matching procedure must

be applied to account for the overlap in phase space between the contributions of the

ME and parton shower (PS). For this analysis, the matching is implemented using

the MLM scheme [15], an event-rejection based approach that matches ME partons

to jets clustered by Pythia, discarding events in which the jets are not successfully

matched to partons in order to avoid double counting.

It should be noted that the matching procedure can lead to complications when

applied to EFT samples; since EFT e↵ects are included in the ME contribution, but

not in the PS contribution, it is possible that an inconsistency could arise. Specifically,

if an EFT vertex produces a significant soft and collinear contribution, the events

removed by the matching procedure will never be replaced by corresponding events

generated by the PS, causing this contribution to be missed. However, of the WCs

considered in this study, the operator associated with the ctG WC is the most prone

to these e↵ects, and its contributions to the soft and collinear regime are suppressed;

thus, the phase space overlap with the SM contribution from the PS is small, and

the e↵ects of this potential issue are negligible [9].
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In addition to the theoretical justification outlined above, we can validate the

matching procedure empirically by examining di↵erential jet rate (DJR) distributions

for the simulated samples. The resulting DJR distributions provide further evidence

that the matching is working properly. The details of the validation of the DJR

distributions may be found in Appendix B.1, and a more detailed discussion of the

validation of matched tt̄X samples is presented in [9].

As an additional form of validation, our EFT signal samples are reweighted to

the SM and compared against SM samples that are centrally produced by the CMS

collaboration. The details of this comparison are presented in Appendix ??. The

comparisons show that the level of agreement is generally good, providing further

evidence that the reweighting is working properly and that the LO modeling (and

associated uncertainties) are su�cient for this analysis.

3.2.2 Parameterization of the predicted yields in terms of the WCs

This section will describe the method through which the predicted yields are

parameterized in terms of the WCs. In order to write the predicted yields as a

function of the WCs, it is first necessary to understand how the cross section depends

on the WCs. Starting with the ME, we can write the amplitude for a given process

as the sum of the SM and new physics components:

M = MSM +
X

i

ci
⇤2

Mi, (3.2)

where MSM is the SM ME, Mi are the MEs corresponding to the new physics com-

ponents, and ci are the WCs. Since the cross section (inclusive or di↵erential) is

proportional to the square of the ME, it will depend quadratically on the WCs:

� / |M|
2
/ s0 +

NX

j

s1j
cj
⇤2

+
NX

j

s2j
c2j
⇤4

+
NX

j 6=k

s3jk
cj
⇤2

ck
⇤2

, (3.3)
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where sjk are structure constants of the N -dimensonal quadratic function for N

WCs. The number of structure constants (K) required to describe an N -dimensional

quadratic can be written as the following:

K =
(N + 1) · (N + 1)� (N + 1)

2
+ (N + 1). (3.4)

This analysis considers 26 WCs, so by Eq. 3.4, there are 378 structure constants

required to fully describe the 26-dimensional quadratic. In principle, we could solve

for these structure constants if the cross section at 378 points in the 26-dimensional

WC space were known. However, this would require generating 378 unique simulated

samples at 378 unique points in the 26-dimensional WC space. In practice, it would

not feasible to generate this many simulated samples.

Instead of attempting to determine the parametrization for the inclusive cross

section, we parametrize each event’s weight in terms of the WCs. Since each weight

corresponds to the event’s contribution to the inclusive cross section, the event weight

essentially represents a di↵erential cross section, which can be described by a 26-

dimensional quadric in terms of the WCs, as written in equation 3.3. In order to

determine the 378 structure constants of the event weight’s quadratic parameteriza-

tion, we need to know the event weight at 378 distinct points in the 26 dimensional

space. This is feasible to do using the MadGraph event reweighting [16] procedure.

Given an event generated under a specific theoretical scenario, the MadGraph

event reweighing procedure computes additional weights associated with the same

event under alternative theoretical scenarios. In the case of EFT reweighting, the

original theoretical scenario corresponds to a particular point in the 26-dimensional

WC space, provided to MadGraph by the user. We refer to this as the “starting point”

for the sample. The alternative theoretical scenarios correspond to other distinct

points in the 26-dimensional WC space (i.e. other sets of values for the 26 WCs),
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also provided to MadGraph by the user. From the matrix-element computations,

MadGraph calculates the weight at the starting point and at each of the additional

reweight points. With at least 378 weights corresponding to 378 independent points

in the 26-dimensional WC space, we can solve for the 26 structure constants, and

fully determine the 26-dimensional quadric function that describes the event’s weight

in terms of the WCs.

Once we have obtained each event’s 26-dimensional quadratic parametrization

wi(~c/⇤2), we can find the dependence of any observable bin on the WCs by summing

the quadratic parameterizations for each of the events that passes the selection criteria

for the given bin. The sum of the weights for the passing events (
P

Passw from

Eq. 3.1) can thus be written follows:

X

Pass

w =
X

i

wi

✓
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,
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!
,

(3.5)

where the sum over i corresponds to the sum over all of the events that pass the

selection criteria for the given bin. Performing a similar sum over all events in the

sample, we can obtain the
P

Gen w term from Eq. 3.1. Since the sum of multiple

quadratic functions is also quadratic, both
P

Passw and
P

Gen w are quadratic in

terms of the WCs.

In this analysis, we evaluate
P

Gen w at the SM (e↵ectively canceling the LO

cross section). We then normalize the predicted yield to a more precise (i.e. NLO or

better) SM cross section calculation. Rewriting Eq. 3.1 with these nuances included,

the expected yield in any bin can be expressed as a function of the WCs as follows:

Expected yield (~c) = �SM L

P
Passw(~c)P

Gen w(SM)
, (3.6)
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Where ~c are the WCs, �SM is the inclusive cross section from an NLO (or better)

calculation,
P

Passw(~c) is the sum of the event weight parameterizations of the passing

events, and
P

Gen w(SM) is the sum of the event weight parameterizations for all

generated events (evaluated at the SM).

Since we are thus able to write the predicted yield of any observable bin as a

function of the 26 WCs, we can obtain detector-level predictions at any arbitrary

point in the 26-dimensional EFT space. This is the key enabling concept of this

analysis, as it allows for all EFT e↵ects across all analysis bins to be simultaneously

accounted for when performing the likelihood fitting with the statistical framework

(which will be described in Chapter 10).

We generate all of our signal processes using the reweighting procedure described

in this section. However, we do not include all WCs for all processes (since some

of the WCs do not impact some of the processes), so the number of reweight points

included in the MC generation varies by sample. The tt̄tt̄ process incorporates the

full set of 26 WCs. By Eq. (3.4), a total of 378 weights are required to fully determine

the 26-dimensional quadratic parameterization. However, in order to ensure that a

good fit can be found, we over-constrain the fit by including approximately 20% more

points than the minimum number required, for a total of 454 reweight points. As

discussed in Section 2.2, the other five signal samples have a negligible dependence on

the four four-heavy operators to which tt̄tt̄ is sensitive, so these samples incorporate

only 22 WCs. This means a minimum of 276 reweight points are required to determine

the 22-dimensional quadratic fit, but we again ensure the fit is over-constrained by

generating additional reweight points, for a total of 332 reweight points for each

event.

The MadGraph reweighting procedure is powerful because it allows di↵erent re-

gions of EFT phase space to be probed with a single MC sample; however, there is

an important caveat to the procedure that should be highlighted. Since MadGraph
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produces unweighted samples of events, the events generated by MadGraph mainly

correspond to phase space occupied by original event. Thus, the reweighting proce-

dure does not work unless the original point in phase space (i.e. the starting point)

and the alternative points in phase space (i.e. the reweight point) have some overlap.

EFT operators lead to new diagrams that may populate areas in phase space that

are not present in the SM, therefore the SM cannot be used as a valid starting point

for the reweighting procedure. Instead, a point that is relatively far from the SM

should be chosen.

Nevertheless, even for non-SM starting points, there is still no guarantee that the

chosen point will allow MadGraph to properly reweight to all areas of relevant phase

space. Therefore, it is important to validate reweighted samples to ensure that they

are able to be consistently reweighted to as much of the relevant phase space as possi-

ble. For example, we check that the samples are able to be consistently reweighted to

other points in EFT phase space (by comparing against dedicated samples produced

at the given point in phase space), as well as checking the distribution of event weights

for samples generated at di↵erent starting points. Details regarding the validation

checks performed for this analysis are provided in Appendix B.2.
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